3 research outputs found

    Simulation of the communication system between an AUV group and a surface station

    Get PDF
    An object model for simulation of the communications system of an autonomous underwater vehicles (AUV) group with a surface station is proposed in the paper. Implementation of the model is made on the basis of the software package "Object Distribution Simulation". All structural relationships and behavior details are described. The application was developed on the basis of the proposed model and is now used for computational experiments on the simulation of the communications system between the autonomous underwater vehicles group and a surface station

    On automatic tuning of basis functions in Bezier method

    Get PDF
    A transition from the fixed basis in Bezier's method to some class of base functions is proposed. A parameter vector of a basis function is introduced as additional information. This achieves a more universal form of presentation and analytical description of geometric objects as compared to the non-uniform rational B-splines (NURBS). This enables control of basis function parameters including control points, their weights and node vectors. This approach can be useful at the final stage of constructing and especially local modification of compound curves and surfaces with required differential and shape properties; it also simplifies solution of geometric problems. In particular, a simple elimination of discontinuities along local spline curves due to automatic tuning of basis functions is demonstrated

    An algorithm of the wildfire classification by its acoustic emission spectrum using Wireless Sensor Networks

    Get PDF
    Crown fires are extremely dangerous as the speed of their distribution is dozen times higher compared to surface fires. Therefore, it is important to classify the fire type as early as possible. A method for forest fires classification exploits their computed acoustic emission spectrum compared with a set of samples of the typical fire acoustic emission spectrum stored in the database. This method implies acquisition acoustic data using Wireless Sensors Networks (WSNs) and their analysis in a central processing and a control center. The paper deals with an algorithm which can be directly implemented on a sensor network node that will allow reducing considerably the network traffic and increasing its efficiency. It is hereby suggested to use the sum of the squares ratio, with regard to amplitudes of low and high frequencies of the wildfire acoustic emission spectrum, as the indicator of a forest fire type. It is shown that the value of the crown fires indicator is several times higher than that of the surface ones. This allows classifying the fire types (crown, surface) in a short time interval and transmitting a fire type indicator code alongside with an alarm signal through the network
    corecore